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Abstract. General features of the SUSY semiclassical quantisation rule including higher- 
order corrections are discussed in relation to non-solvable potentials. The pairing between 
the levels of the SUSY partner Hamiltonians is shown to hold in every order of the 
approximation up to the fifth. This result appears to be true in all orders. A class of 
non-solvable superpotentials 6 = xZh.+'/2N + 1 is studied in some detail and numerical 
results for the case N = 1 are presented. 

1. Introduction 

Motivated by considerations of supersymmetry, Comtet et a1 (1985) have proposed a 
modified JWKB quantisation rule which is applicable to one-dimensional Hamiltonians 
containing a potential of the form V(x) = r$*+  h dr$/dx. This SJWKB rule, derived in 
the lowest order of a semiclassical treatment of the bound-state problem, was found 
to yield the exact spectrum for known solvable potentials, including those for which 
the standard (lowest-order) J W K B  quantisation condition is not exact. This remarkable 
property of the SJWKB rule was recently shown by us (Raghunathan et a1 1987) to be 
due to the vanishing of all higher-order corrections for all solvable potentials, a class 
which includes the so-called shape-invariant potentials (Dutt et a1 1986). 

In contrast, the higher-order corrections for non-solvable potentials are non-zero 
and the lowest-order SJWKB rule is not exact. It is therefore of interest to examine 
how well the SJWKB quantisation rule works in such cases. To this end, the SJWKB 

analysis must be extended to include the higher orders of the approximation. The 
importance of higher-order corrections in the traditional JWKB formalism is now well 
documented (see, for instance, Bender et a1 1977, Seetharaman and Vasan 1984, 1986). 

Our aim in the present work is to study the higher orders in the SJWKB analysis, 
with the view to determine (i)  the general features, if any, of the SJWKB scheme in 
higher orders, (ii) whether the relation E+,K = E - , K + I  between the exact eigenvalues 
of the partner Hamiltonians H, = h dr$/dx) holds also far the SJWKB energy 
values in every order of the approximation, and (iii) the extent to which the analysis 
parallels the conventional J W K B  approach. We follow the method of Dunham (1932) 
which enables us to extend the SJWKB rule to all orders in an elegant fashion. We 
analyse in some detail a class of superpotentials given by 4 = xZNt1/2N + 1 and have 
carried out calculations up to the twelfth order. 

This paper is organised as follows. In the next section we show how the SJWKB 
rule can be extended to all orders and discuss some general features of the resulting 
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analysis. In § 3 we apply the formalism to the case of the superpotential 4 =  
/ 2 N + l .  Results are presented and discussed in the last section. X 2 N + I  

2. Higher-order corrections to the SJWKB rule 

In SUSYQM one considers partner Hamiltonians 

E = *l. He = -ti2-+ d2 c#J’(x) + ~ h -  d+ 
dx2 dx  

The S J W K B  rule of Comtet et a1 (1985) for determining the eigenvalues of H ,  is 

lOb(EE-4’)”’dx=n-h(K + $ + : E )  K =0,1 ,2 ,  . . .  (2.2) 

where a, b are turning points defined by + ’ ( a )  = +’(b) = E,. To derive (2.2), one 
proceeds in the usual manner: the wavefunction is approximated in the form exp[i(So+ 
h S , ) /  h ]  and the connection formulae are invoked to impose continuity. 

Long ago Dunham (1932) showed that the standard (lowest-order) J W K B  quantisa- 
tion rule could be generalised to include all higher-order corrections. In the SUSY 

context, when 4’ has a single minimum, Dunham’s analysis can be readily adapted 
to yield the following quantisation rule (with h = 1): 

m f Zo (-i)”Yn dx = 2n-K K = 0 , 1 , 2 , .  

The functions y,,(x) are to be determined by solving the recurrence relation 

with 

(2.3) 

(2.4) 

(2.5) 

The integration in (2.3) is over a closed contour in the complex x plane enclosing a 
branch cut along the real axis joining the two real branch points of yo .  As the direction 
of integration depends on the branch of yo ,  we take for definiteness yo to be that 
branch which is negative real on the upper lip of the cut. The contour is then to be 
traversed in the counterclockwise sense. We may note that the recurrence relation 
occurring in Dunham’s J W K B  formalism is the same as (2.4) but the expressions for 
yo and y ,  differ from those given in (2.5). The quantisation formula (2.3) is exact and 
forms the basis of all higher-order calculations considered in this work. It is not difficult 
to verify that, if the n = 0 and n = 1 terms alone are retained in (2.3), the SJWKB rule 
(2.2) is obtained. Thus (2.3) is the generalisation to all orders of (2.2). 

In other words, the lowest-order S J W K B  

rule reproduces the pairwise degeneracy that is known to occur between the exact 
levels of the SUSY partners H ,  (Witten 1981, Sukumar 1985). We now investigate 
whether the inclusion of higher-order corrections to ( 2 . 2 )  preserves this symmetry. 
From the recurrence relation (2.4) explicit expressions for the y,, in terms of yo and 4 
can be obtained. As E’ = 1, every yn can be written as 

It is evident from (2.2) that E+,K = 

y,, = a,, + Eb,, (2.6) 
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where a,, bn are independent of E. It is clear that if the bn do not contribute to (2.3), 
the pairing of levels will be preserved. 

Substituting (2.6) in (2.4) we get the following recurrence relations for the a, and 
b, : 

with a, = yo, bo = 0. To proceed further, we adapt a method due to Froman (1966). 
We define 

n = O  n 50 
(2.9) 

ic 00 

B E  = C A2“bzn Bo= E A2nt’b2n+l 
n = O  n =O 

where A is an arbitrary parameter. By virtue of (2.7) and (2.8), we get the following 
relations among the A and B: 

A; = -(2/A)(AoA, +BOB,=) (2.10) 

Ab= -(l/A)(A:+ & + A i +  Bi- ai)  (2.11) 

B; = -(2/A)(AoBE+AEB0)-i4‘ (2.12) 

Bb=-(2/A)(A,BE +A&). (2.13) 

Here the primes on the LHS denote differentiation with respect to x. In obtaining the 
above we have made use of bo=O. From (2.10) and (2.13), it follows that 

Ak * BA = - ( 2 / h ) ( A ~  * Bo)(Ao * B E ) .  

Hence 

(2.14) 
A d  

A,, * BE = -- - In(A, i Bo). 
2 dx  

Equation (2.14) shows that 

Expanding both sides in powers of A, it can be seen that every b2, is a derivative. 
Consequently, f b2, dx  vanishes. It then follows that the even-order corrections in 
(2.3) taken by themselves preserve the level pairing. As regards b2,+, ( n  = 1,2 , .  . .), 
we first obtain the following explicit expressions for b3 and b5 from the recurrence 
relations (2.7) and (2.8): 

b3 = - ( i / 1 6 ~ ; ) [ 2 5 4 ~ 4 ’ ~ + y i ( 5 4 ’ ~ +  1644’4”)  +2y$$“’] 

b5 = (i/256yA3)[12 1 5 5 ~ 4 ~ ’ s + 2 y ~ ( 3 4 5 3 ~ 2 ~ ’ 5 + 6 1 8 8 ~ 3 ~ ’ 3 4 ” )  

+y;(3994I5 +434444’34”+2300424’4’’2+ 1668424’24r‘’) 

+ 4 ~ ; ( 8 9 4 ’ 4 ‘ ’ ~  + 6 3 4 ’ 2 ~ ” ’ +  66#+”4”‘+ 3844’6”)  + 8y$#Y’’], 
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It is a simple matter to verify that these are expressible as derivatives of single-valued 
functions: 

b --i-(-+-$) d 5 4 4 ~ ' ~  
dx  16y: 3 -  

[1105+3q5'4+y~(39944'4+884q524'24") 

We believe this to be true of all b2,+,. We have been unable to find a general proof 
of this conjecture so far, but considerable evidence in its favour comes from our study 
of a class of superpotentials q5 = x Z N + '  (discussed below). If b2,+, is a derivative as 
conjectured, then the level pairing will hold in every order. 

In view of the above discussion, it is clear that the corrections to the lowest-order 
result in (2.3) come only from the a,. Of these, the contribution from the odd terms, 
a,,,,, can be determined easily because A. is given by 

A d  
4 dx  

Ao=---[ ln(AE+Bo)+In(A,-B,)]  (2.16) 

which follows from (2.10) and (2.13). Expanding the RHS of (2.16) in powers of A and 
matching terms, it is clear that a,,,, is a derivative. Apart from a , ,  which is a logrithmic 
derivative, the other a,,+, do not contribute to the quantisation rule (2.3). Therefore, 
the quantisation rule can be written as 

X 

- i f ( a l + e b l ) d x +  2 (-l)"a2, dx=2.rrK !l n=O 

i.e. 
5 

( -1)"~2,  d x = 2 7 r ( K + i + i e )  K = 0 , 1 , 2  , . . . .  (2.17) 

This quantisation formula is very similar to what one has in the standard J W K B  treatment 
(Bender et a1 1977). However, we may note that the u2, are not the same as those in 
the J W K B  analysis because of the b,. The extra ;e on the RHS reflects the cancellation 
of the zero-point energy of the ground state in SUSYQM. The above formula forms the 
basis for our calculations of energies in the SJWKB scheme. 

f n=O 

3. Application to the case 4 = X ~ . ~ + ' / ~ N  + 1 

We now consider the class of superpotentials q5 = x Z N + ' / 2 N  + 1 which gives V,(x) = 
X 4 N + 2  / ( 2 N + 1 ) 2 + ~ ~ 2 N .  Both V+ and V- are confining potentials. Unlike V,, V- is 
a double-well potential for where there exists a normalisable ground state with E- = 0 
and wavefunction -exp[-xZN+,/(2N + 1)(2N +2)]. As V,  has no normalisable state 
with E+ = 0, this is a case of unbroken SUSY. 

Using the recurrence relation (2.4), we find that y ,  for any n can be expressed in 
the form 

[ n u l  4 N + 1  
2 N + 1  

Y ,  = (iE)n ~ , , ~ ( i ~ ~ ) ( 4 N + l ) n - ( Z N + I ) k  k + l - 3 n  a=- Y o  
k = O  
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where Cn,k are constants, and [ p ]  stands for the integer part of p. From (3.1) and 
(2.4) the following recurrence relation for the coefficients Cn,k is obtained: 

(-3n + m + 1) 
2 N + 1  - 2 C , + , , m = [ ( 4 N + l ) n - ( 2 N + l ) ( m  -2)]C,,,-,+ C , m  

(3.2) 
, = I  k = O  

The values of the first few sets of the Cn.k computed from (3.2) using the initial values 

To evaluate the integral of y ,  in (2.3), we need to compute integrals of the two types 
1, Cl,o= - 1 / ( 4 N + 2 ) ,  and Cl,l =: are given in table 1. 

for non-negative integral values of m and n. The evaluation of such integrals is outlined 
in appendix 1, and we have the results: 

( -2)"(4n+2)  ( 2 N +  1 ) 2 ( m - N l l " N ~ l l  

(2n+1)!!  

x B(4, ( 2 m +  1 ) / ( 4 N + 2 ) )  d" E'm-N" '2N+11 (3.3) d E "  

In the above B ( s ,  t )  is the beta function defined by B ( s ,  t )  = r(s)r(t)/r(s + t ) .  
Using the above formulae we can write down the quantisation rule to any order. 

We have carried out this calculation up to twelfth order. After identifying the a ,  and 
b, of (2.6) in (3.1), we find that b,, is a derivative and hence $ b, dx vanishes for every 
n > 1, whereas $ bl dx = i7r. This implies that the pairing of energy levels of the SUSY 
partners H, is preserved in every order of the SJWKB approximation considered. Not 
surprisingly, we also find that $ a2n+l  dx = 0 for every n > 0. Collecting together the 

Table 1. Values of QnA = ( 2 N +  l)nC,, ,k 

Qoo=1 Qio=-1/2 Q1, = ( 2 N +  l ) /2  

Q20 = -5/8 QZI = (2N + 1)/2 Q22 = (6N + 1)(2N + 1)/8 Q23 = - N ( 2 N +  1 ) 2 / 2  

Q,o= -15/8 Q31 = 25(2N+ 1)/16 Q3* = (56N + 10)(2N+ 1)/16 
Q33= - (42N+5) (2N+ 112/16 Q34= - N 2 ( 2 N +  lI2 Q35= N ( 2 N -  1 ) (2N+ 113/4 

Q40 = - 1105/ 128 
Q43 = -( 145 N + 23)(2 N + 1 )2/8 
Q45 = ( 3 9 N 2 + 2 N ) ( 2 N +  1)3/4 
QM= (10N3-5N2+ N ) ( 2 N +  1y /8  

Qso=-1695/32 95, =12 155(2N+1)/256 Qs2=(5580N+1095) (2N+1) /32  
QS3 = -(19 282N+3453)(2N+ 1)2/128 Q S 4 =  -(2696N2+698N+53)(2N+ 1)2/16 
QS5 = (34 8MNZ+6948N + 399)(2N + 113,'256 
Q5j = -(1024N3- 182N2+ 13N) (2N+ 114/32 
Q59= N(N-1)(2N-1)(2N-3)(2N+1)5/8  

Q41 = 15( 2 N + 1 ) / 2  Q42 = ( 1418N + 267)( 2N + 1 )/64 
QM = -( 1748 N 2  + 3 16N + 21 ) ( 2  N + 1 )2/  128 

Q47=-N(2N- 1 ) ( N -  1 ) (2N+ 1)4/4 

QS6 = (370N3+9N2+3N+ 3 ) ( 2 N  + 1)3/8 
Q58=(2N- 1) ( -6N3+5N2-  N -  1)(2N+1)4/8  
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contributions from the non-vanishing integrals, the quantisation rule can be expressed 
as 

where the coefficients Azn are functions of N. The energy values can be computed 
from this formula. To illustrate let us choose N = 1. The values of Az, for this case 
up to n = 6 are listed below: 

A,, = $3 Ii3B($, i )  = 5.254 080 527 

A 4 = 0  

Ag=-1.046313017 Alo=O AI>= 101.4. 

A 2 = ~ 3  2 2 / 3 ~  (1,~)-0.345217275 I 5 - 
(3.6) 

A, = -&$3”3B(;, 1) = -0.281 456 206 

The values of A. and A, given above coincide with the ones computed by Dutt et a1 
(1986) who have applied the SJKWB quantisation rule to the potential V = & x 6 + x 2  
taking only the first two terms in (3.5). As noted by them, reasonably good results are 
obtained with just A, and A2 in (3.5). 

4. Results and discussion 

The energy values corresponding to the potential V+(x) = &x6+ x 2  calculated using 
(3.5) are presented in table 2. The exact energies shown in the table are the numerical 
eigenvalues computed by Boya et a1 (1987) (suitably scaled to correspond to our V + ) .  
The last two exact values are from the work of Mathews et a1 (1981a, b). The agreement 
between the SJWKB values and the exact eigenvalues is quite good. In this connection 
we wish to point out that the ‘exact’ values quoted by Dutt et al (1986) for the above 
potential are inaccurate because they have approximated the coupling strength & by 
0.1. This results in their values being in significant error, the magnitude of the error 
increasing with the quantum number K of the level. Our results show that corrections 
to the energy values beyond order n = 2 are generally quite small. Nevertheless, the 
asymptotic nature of the SJWKB expansion is clearly reflected in the numerical values 
for the low-lying levels obtained in various orders. Another indication of this is the 
manner in which the coefficients A2, in ( 3 . 5 )  vary with n. 

Table 2. SJWKB energy values for the potential v+ = $ x b + x 2 .  

E, 

K zeroth order second order sixth order eighth order Exact 

0 
1 
2 
3 
4 
5 

10 
100 

1000 

1.307 75 1.214 206 
3.698 876 3.634 586 
6.795 268 6.743 033 

10.462 00 10.416 84 
14.621 09 14.580 73 
19.219 92 19.183 09 
47.710 38 47.683 29 

1327.415 1327.406 
41 416.73 41 416.73 

1.256 751 
3.636 277 
6.743 297 

10.416 91 
14.580 75 
19.183 10 
47.683 29 

1327.406 
41 416.73 

~ ~~ 

1.336 743 
3.637 398 
6.743 373 

10.416 92 
14.580 75 
19.183 10 
47.683 29 

1327.406 
41 416.73 

1.117451 
3.636 438 
6.744 012 

10.416 92 
14.580 75 
19.183 10 
47.683 29 

1327.406 
41 416.73 
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Finally, we make a few general observations regarding the h series expansion in 
the JWKB and SJWKB approaches. I t  was pointed out in our earlier paper (Raghunathan 
er al 1987) that for solvable potentials, the lowest-order SJWKB term, which is exact, 
can be expanded in a power series in h and the series so obtained coincides term by 
term with the corresponding J W K B  series for that potential. For the non-solvable 
potential that we have studied in the present work, each order of SJWKB corresponds 
to a definite power of h while each order of J W K B  can further be expanded in a power 
series in h. A closer look at the J W K B  series reveals that the nth-order term contains 
all terms of the SJWKB series starting with h" but with different coefficients. In the 
light of this, it is not possible to say, up to any given (finite) order, whether SJWKB 

analysis would be better or worse than conventional J W K B  analysis. However, it can 
be verified that if each J W K B  term is expanded in powers of h and all terms of a given 
power of h collected then the resulting coefficients will be the same as those in the 
SJWKB series. Some of the above points are illustrated in appendix 2 for the case 
4 = x3/3. 
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Appendix 1 

We evaluate here the integrals in (3.3) and (3.4). Consider 

(Al . l )  

where yo = [E  - x ~ ~ + ~ / ( ~ N  + 1)2]1'2 and the contour is a closed curve enclosing only 

differentiation under the integral sign, (A l . l )  could be rewritten as 
a branch cut on the real axis connecting the points x = *[ (2N+ 1)2E]1"4N+2) ' BY 

d" 
I (  m, n )  = (-2)" - r(m, 0). 

( 2 n - l ) ! !  dE"  (Al.2) 

By a change of variable x = t [ ( 2 N +  1)2E]1/(4N+2) one can separate out the E depen- 
dence of the integral as follows: 

Since the integrand in (A1.3) has only integrable singularities at r = *l ,  the contour 
can be compressed onto the real axis. It then follows that 

2 
2 N + 1  E ( ; ,  ( 2 m - 4 N - l ) / ( 4 N + 2 ) + 1 ) .  (Al.4) -- - 
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Using (A1.4) and (A1.3) we get immediately (3.3). Proceeding similarly, the integral 

J (  m, n )  = ~ ~ ~ + l y ~ ~ ~  dx (A1.5) f 
can be written as 

(A1.6) 

In this case the only singularities enclosed by the contour are a pair of simple poles 
at t = *l. Applying the residue theorem, it is simple to show that 

(A1.7) J ( ~ ,  1) = - 2 . r r i ( 2 ~ +  1)(2m+l-2NI/~ZN+l ) ~ < m - 2 . N ) / ( 2 N + l l  

Inserting (A1.7) into (A1.6), we obtain (3.4). 

Appendix 2 

For a potential V ( x )  with a single minimum the traditional J W K B  quantisation condition 
can be written as 

f f (-if~)~"y,, ,  d x = 2 n ( K + f ) h  
n=O 

(A2.1) 

where the y ,  satisfy the recurrence relation (2.4) with y i =  E - V ( x )  and y ,  = 
-( 1/2y0) dxo/dx. For 

(A2.2) V ( x )  = $x6 + fix2 

the lowest-order term in (A2.1) is 

yo dx = ( E  -$x6 - dx. f f  
Expanding this as a power series in h, one obtains 

y o  dx = f B ,  E2'3 - .nfi + b B 5 E - 2 / 3 h 2  

+ $ B , E - 4 / 3 h 3  - & B 5 E - 8 / 3  A '  - 6480B1E-10'3h6+. 49 , , (A2.3) 

+- 
where 

B ,  =3'"B(&k)  B5 = 32'3B(4, 2). (A2.4) 
Clearly, the lowest-order J W K B  integral for the potential (A2.2) contains all powers of 
h. This is true of every y , ,  dx. Proceeeding as above we get 

(A2.5) E - 4 / 3 f i + B B  - 8 / 3 f i 3 + 2 B  E-1°/3h4+.  . . -+- 36 1 972 SE 144 1 

(A2.6) 

(A2.7) 
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Multiplying by appropriate powers of h and adding, the LHS of (A2.1) correct to order 
h6 is 

1~ 2 1  ~ 2 / 3 -  .rrh + ~ ~ ~ ~ - ' / 3 h ' - ~ ~ ~ ~ - 1 0 / 3 h 6  98415  (A2.8) 

Transferring n h  to the R H S  of (A2.1) and comparing with (3 .5 ) ,  it is seen that the 
above coefficients of different powers of E are the same as those in (3.6). This illustrates 
the point made in 0 4 of the text. 
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